Make your own free website on Tripod.com

 

Antibiótico (del griego, anti, ‘contra’; bios, ‘vida’), cualquier compuesto químico utilizado para eliminar o inhibir el crecimiento de organismos infecciosos. Una propiedad común a todos los antibióticos es la toxicidad selectiva: la toxicidad hacia los organismos invasores es superior a la toxicidad frente a los animales o seres humanos. La penicilina es el antibiótico más conocido, y ha sido empleado para tratar múltiples enfermedades infecciosas, como la sífilis, la gonorrea, el tétanos o la escarlatina. La estreptomicina es otro antibiótico que se emplea en el tratamiento de la tuberculosis. En un principio, el término antibiótico sólo se empleaba para referirse a los compuestos orgánicos producidos por bacterias u hongos que resultaban tóxicos para otros microorganismos. En la actualidad también se emplea para denominar compuestos sintéticos o semisintéticos. La principal categoría de antibióticos son los antibacterianos, pero se incluyen los fármacos antipalúdicos, antivirales y antiprotozoos.

Historia

El mecanismo de acción de los antibióticos no ha sido conocido de forma científica hasta el siglo XX; sin embargo, la utilización de compuestos orgánicos en el tratamiento de la infección se conoce desde la antigüedad. Los extractos de ciertas plantas medicinales se han utilizado durante siglos, y también existe evidencia de la utilización de los hongos que crecen en ciertos quesos para el tratamiento tópico de las infecciones. La primera observación de lo que hoy en día se denominaría efecto antibiótico fue realizada en el siglo XIX por el químico francés Louis Pasteur, al descubrir que algunas bacterias saprofíticas podían destruir gérmenes del carbunco (enfermedad también conocida como ántrax). Hacia 1900, el bacteriólogo alemán Rudolf von Emmerich aisló una sustancia, capaz de destruir los gérmenes del cólera y la difteria en un tubo de ensayo. Sin embargo, no eran eficaces en el tratamiento de las enfermedades.

En la primera década del siglo XX, el físico y químico alemán Paul Ehrlich ensayó la síntesis de compuestos orgánicos capaces de atacar de manera selectiva a los microorganismos infecciosos sin lesionar al organismo huésped. Sus experiencias permitieron el desarrollo, en 1909, del salvarsán, un compuesto químico de arsénico con acción selectiva frente a las espiroquetas, las bacterias responsables de la sífilis. El salvarsán fue el único tratamiento eficaz contra la sífilis hasta la purificación de la penicilina en la década de 1940. En la década de 1920, el bacteriólogo británico Alexander Fleming, que más tarde descubriría la penicilina, encontró una sustancia llamada lisozima en ciertas secreciones corporales como las lágrimas o el sudor, y en ciertas plantas y sustancias animales. La lisozima presentaba una intensa actividad antimicrobiana, principalmente frente a bacterias no patógenas.

La penicilina, el arquetipo de los antibióticos, es un derivado del hongo Penicillium notatum. Fleming descubrió de forma accidental la penicilina en 1928; esta sustancia demostró su eficacia frente a cultivos de laboratorio de algunas bacterias patógenas como las de la gonorrea, o algunas bacterias responsables de meningitis o septicemia. Este descubrimiento permitió el desarrollo de posteriores compuestos antibacterianos producidos por organismos vivos. Howard Florey y Ernst Chain, en 1940, fueron los primeros en utilizar la penicilina en seres humanos.

La tirotricina fue aislada de ciertas bacterias del suelo por el bacteriólogo americano René Dubos en 1939; fue el primer antibiótico utilizado en enfermedades humanas. Se emplea para el tratamiento de ciertas infecciones externas, ya que es demasiado tóxico para su utilización general. Los antibióticos producidos por un grupo diferente de bacterias del suelo denominadas actinomicetos han resultado más eficaces. La estreptomicina pertenece a este grupo; fue descubierta en 1944 por el biólogo americano Selman Waksman y colaboradores; es efectiva en el tratamiento de muchas enfermedades infecciosas, incluidas algunas contra las que la penicilina no es eficaz, como la tuberculosis.

Desde la generalización del empleo de los antibióticos en la década de 1950, ha cambiado de forma radical el panorama de las enfermedades. Enfermedades infecciosas que habían sido la primera causa de muerte, como la tuberculosis, la neumonía o la septicemia, son mucho menos graves en la actualidad. También han supuesto un avance espectacular en el campo de la cirugía, permitiendo la realización de operaciones complejas y prolongadas sin un riesgo excesivo de infección. Se emplean igualmente en el tratamiento y prevención de infecciones por protozoos u hongos, especialmente la malaria (una de las principales causas de muerte en los países en desarrollo). Sin embargo, los avances han sido pocos en el campo del tratamiento de las infecciones virales. Existen fármacos para el tratamiento del herpes zóster o de la varicela. Se está realizando una intensa labor investigadora para encontrar un tratamiento eficaz para la infección del virus de la inmunodeficiencia humana (VIH), con incidencia mundial en la actualidad.

Clasificación

Existen multitud de clasificaciones de los antibióticos. La más habitual los agrupa en función de su mecanismo de acción frente a los organismos infecciosos. Algunos lesionan la pared de la célula; otros alteran la membrana celular, la mayor parte de ellos inhiben la síntesis de ácidos nucleicos o proteínas, los polímeros constituyentes de la célula bacteriana. Otra clasificación agrupa a los antibióticos en función de las bacterias contra las que son eficaces: estafilococos, estreptococos y Escherichia coli, por ejemplo. También se pueden clasificar en función de su estructura química, diferenciando así las penicilinas, cefalosporinas, aminoglucósidos, tetraciclinas, macrolidos, sulfamidas u otros.

Mecanismo de acción

Los antibióticos pueden lesionar de forma selectiva la membrana celular en algunas especies de hongos o bacterias; también pueden bloquear la síntesis de proteínas bacterianas. La anfotericina, un fármaco antifúngico, altera la estructura química de la membrana celular de algunos hongos, permitiendo la entrada de algunas toxinas e impidiendo la entrada de ciertos nutrientes vitales para el hongo.

La mayor parte de los antibióticos inhiben la síntesis de diferentes compuestos celulares. Algunos de los fármacos más empleados interfieren con la síntesis de peptidoglicanos, el principal componente de la pared celular. Entre éstos se encuentran los antibióticos betalactámicos, que, dependiendo de su estructura química, se clasifican en penicilinas, cefalosporinas o carbapénem. Todos los antibióticos betalactámicos comparten una estructura química similar en forma de anillo. Este anillo impide la unión de los péptidos a las cadenas laterales en el proceso de formación de la pared celular. Todos estos compuestos inhiben la síntesis de peptidoglicanos pero no interfieren con la síntesis de componentes intracelulares. De este modo, continúan formándose materiales dentro de la célula que aumentan la presión sobre la membrana hasta el punto en que ésta cede, el contenido celular se libera al exterior, y la bacteria muere. Estos antibióticos no lesionan las células humanas ya que éstas no poseen pared celular.

Muchos antibióticos actúan inhibiendo la síntesis de moléculas bacterianas intracelulares como el ADN, el ARN, los ribosomas o las proteínas. Las sulfonamidas son antibióticos sintéticos que interfieren la síntesis de proteínas. La síntesis de ácidos nucleicos puede ser detenida por los antibióticos que inhiben las enzimas que realizan el ensamblaje de los polímeros —por ejemplo, el ADN polimerasa o ARN polimerasa. Entre éstos, se encuentran la actinomicina, rifamicina y la rifampicina (estos dos últimos empleados en el tratamiento de la tuberculosis). Las quinolonas son antibióticos que inhiben la síntesis de una enzima que realiza el proceso de enrollado y desenrollado de los cromosomas: este proceso es fundamental para la replicación y transcripción del ADN en ARN. Algunos fármacos antibacterianos actúan sobre el ARN mensajero, alterando su mensaje genético. Así, al realizarse el proceso de traducción del ARN defectuoso, las proteínas producidas no son funcionales. Las tetraciclinas compiten con alguno de los componentes del ARN impidiendo la síntesis proteica; los aminoglucósidos producen una alteración del proceso de lectura del mensaje genético, produciéndose proteínas defectuosas; el cloranfenicol impide la unión de aminoácidos en la formación de las proteínas; la puromicina interrumpe la formación de la cadena proteica, liberándose una proteína incompleta.

Rango de eficacia

Algunas especies de bacteria tienen una pared celular gruesa compuesta de peptidoglicanos. Otras especies bacterianas tienen una pared celular mucho más delgada y una membrana externa. Cuando las bacterias se someten a la tinción de Gram, estas diferencias estructurales se traducen en una tinción diferencial con el producto denominado violeta de genciana y otros líquidos de tinción. Así, las bacterias gram-positivas, aparecen de color púrpura, y las bacterias gram-negativas son incoloras o rojizas, dependiendo del proceso empleado para su tinción. Esta es la base de la clasificación que diferencia las bacterias gram-positivas (con gruesa pared de peptidoglicanos) y gram-negativas (con fina pared de peptidoglicanos y membrana externa); las propiedades de tinción se correlacionan con otras propiedades bacterianas. Los fármacos antibacterianos pueden ser subdivididos en agentes de amplio espectro y agentes de espectro restringido. Las penicilinas de espectro restringido actúan frente a multitud de bacterias gram-positivas. Los aminoglucósidos, también de espectro restringido, actúan frente a bacterias gram-negativas. Las tretraciclinas y cloranfenicol son antibióticos de amplio espectro, eficaces frente a bacterias gram-positivas y gram-negativas.

Eliminación o inhibición del crecimiento

Los antibióticos también se pueden dividir en bactericidas (capaces de eliminar las bacterias), o bacteriostáticos (bloquean el crecimiento y multiplicación celular). Los fármacos bacteriostáticos resultan eficaces debido a que las bacterias inhibidas en su crecimiento morirán con el tiempo o serán atacadas por los mecanismos de defensa del huésped. Las tetraciclinas y las sulfonamidas son antibióticos bacteriostáticos. Los antibióticos que lesionan la membrana celular producen una liberación de los metabolitos celulares al exterior, y por tanto su muerte. Tales compuestos, como las penicilinas o cefalosporinas, son por tanto bactericidas.

Tipos de antibióticos

Las penicilinas son el grupo más antiguo y seguro de antibióticos. Son antibióticos bactericidas que inhiben la formación de la pared celular. Existen cuatro tipos de penicilinas: las penicilinas-G de espectro restringido, la ampicilina y derivados, las penicilinas resistentes a la penicilinasa y las penicilinas antipseudomonas. Las penicilinas-G son eficaces contra estreptococos gram-positivos, estafilococos, enterococos y meningococos: se emplean en el tratamiento de la sífilis, gonorrea, meningitis, ántrax y el pián. La penicilina V se utiliza en el tratamiento de las infecciones respiratorias.

La ampicilina y la amoxicilina tienen un rango de acción similar a la penicilina-G, con un espectro de acción algo mayor, que incluye a las bacterias gram-negativas. La ampicilina y derivados, son eficaces frente a la fiebre tifoidea, bronquitis, infecciones del tracto urinario, neumonía, meningitis y bacteriemia. Las penicilinas resistentes a la penicilinasa son efectivas frente a las bacterias que han desarrollado resistencia a la penicilina G. Las penicilinas antipseudomonas permiten el tratamiento de las infecciones provocadas por la bacteria gram-negativa Pseudomonas, que es una bacteria frecuente en la flora hospitalaria. Las penicilinas antipseudomonas se pueden administrar de forma profiláctica a los pacientes con una alteración del sistema inmunológico que tienen una susceptibilidad incrementada a las infecciones por gram-negativos.

Los efectos colaterales de las penicilinas son poco frecuentes. Cuando aparecen, consisten en hipersensibilidad inmediata o retardada, erupciones cutáneas, fiebre y shock anafiláctico (reacciones anormales al fármaco). La ampicilina puede producir más efectos colaterales que las penicilinas; consisten en náuseas, vómitos y diarrea. La amoxicilina tiene menos reacciones adversas.

Cefalosporinas

Las cefalosporinas tienen, como las penicilinas, un anillo betalactámico que interfiere con la síntesis de la pared celular bacteriana y son también antibióticos bactericidas. Son más eficaces que la penicilina frente a los bacilos gram-negativos, e igual de eficaces frente a los cocos gram-positivos. Las cefalosporinas se emplean en el tratamiento de la mayor parte de las meningitis, y como profilaxis en cirugía ortopédica, abdominal y pélvica. A pesar de ser en general más costosas que las penicilinas, se emplean con frecuencia debido a su amplio margen de seguridad. También se recomienda su utilización en la profilaxis debido a su eficacia frente a las bacterias gram-negativas. Las reacciones de hipersensibilidad a las cefalosporinas son raras: incluyen erupciones cutáneas y, con menos frecuencia, shock anafiláctico.

Aminoglucósidos

La estreptomicina es el más antiguo de los aminoglucósidos y, después de la penicilina, el antibiótico más empleado. Los aminoglucósidos son antibióticos de espectro restringido que inhiben la síntesis de proteínas bacterianas en bacilos gram-negativos y estafilococos. En ocasiones se utilizan en combinación con la penicilina. Todos los miembros de esta familia —en especial la neomicina— tienen mayor toxicidad que la mayor parte del resto de antibióticos. Los efectos adversos asociados con la utilización prolongada de aminoglucósidos son infrecuentes e incluyen lesión de la región vestibular del oído interno, pérdida auditiva y lesiones en el riñón.

Tetraciclinas

Las tetraciclinas son antibióticos bacteriostáticos que inhiben la síntesis de proteínas bacterianas. Son antibióticos de amplio espectro eficaces frente a cepas de estreptococos, bacilos gram-negativos, las bacterias del género Rickettsia (las bacterias que producen el tifus) y espiroquetas (las bacterias que producen la sífilis). Se emplean también en el tratamiento del acné, la enfermedad inflamatoria pélvica, las infecciones del tracto urinario, las bronquitis y la enfermedad de Lyme. Debido a su amplio espectro, las tetraciclinas pueden, en ocasiones, alterar el equilibrio de la flora bacteriana interna que normalmente es controlada por el sistema inmunológico del organismo; esto puede producir infecciones secundarias en el tracto gastrointestinal o la vagina, por ejemplo. Las tetraciclinas se emplean cada vez menos debido a la aparición de gran número de cepas bacterianas resistentes.

Macrolidos

Los macrolidos son bacteriostáticos. Se unen a los ribosomas bacterianos para inhibir la síntesis de proteínas. La eritromicina es un macrolido con un amplio margen de seguridad y mínimos efectos adversos. La eritromicina es eficaz frente a cocos gram-positivos, y muchas veces se emplea como alternativa a la penicilina frente a infecciones por estreptococos o neumococos. Los macrolidos también se emplean en el tratamiento de la difteria y de las bacteriemias. Los efectos secundarios incluyen náuseas, vómitos y diarrea; pueden producir, de forma excepcional, alteraciones auditivas transitorias.

Sulfonamidas

Las sulfonamidas son antibióticos bacteriostáticos sintéticos de amplio espectro, eficaces contra la mayor parte de bacterias gram-positivas y muchas bacterias gram-negativas. Sin embargo, la aparición de resistencias entre las bacterias gram-negativas a las sulfonamidas, hacen que estos antibióticos se empleen hoy en día en situaciones muy concretas, como el tratamiento de las infecciones del tracto urinario, contra ciertas cepas de meningococo, o como profilaxis de la fiebre reumática. Los efectos colaterales incluyen alteraciones del tracto gastrointestinal e hipersensibilidad.

Producción

El proceso de elaboración de un nuevo antibiótico es largo y costoso. Primero debe identificarse el organismo productor del antibiótico, y el antibiótico debe probarse frente a una amplia variedad de especies bacterianas. A continuación el microorganismo debe cultivarse a gran escala para permitir la purificación y el análisis químico del antibiótico y para diferenciarlo de otros antibióticos. Esto es un proceso complejo debido a que existen miles de compuestos con actividad antibiótica y tales compuestos son redescubiertos de manera cíclica. Cuando el antibiótico ha demostrado su eficacia en el tratamiento de infecciones en animales, se puede iniciar su preparación a gran escala.

En el proceso de comercialización se requiere un método de purificación económico y productivo. Se realiza una intensa labor investigadora para aumentar la productividad seleccionando cepas mejoradas del microorganismo o cambiando el medio de cultivo. Se cultiva entonces el microorganismo en grandes tinajas de acero con sistemas de ventilación forzada. El producto fermentado de forma natural puede ser modificado químicamente para producir antibióticos semisintéticos. Tras el proceso de purificación, los efectos del antibiótico en los órganos y tejidos del huésped (su farmacología), así como los posibles efectos tóxicos (toxicología), deben ser analizados en gran número de animales de diferentes especies. Además se deben determinar las formas de administración más efectivas. Los antibióticos pueden ser tópicos (aplicados en la superficie de la piel, ojo, u oído en forma de cremas o pomadas). Pueden ser orales (se administran por la boca y se disuelven en la boca o se ingieren, para su absorción posterior en el intestino y su paso a la corriente sanguínea). Los antibióticos también pueden administrarse de forma parenteral: por inyección intramuscular, intravenosa o subcutánea; se utiliza esta vía de administración cuando se requiere una absorción rápida.

En distintos países, una vez completados estos pasos previos, el productor solicita un ensayo clínico a la agencia de control de medicamentos. Si se aprueba la solicitud, el antibiótico se prueba en voluntarios para determinar la toxicidad, tolerancia, absorción y excreción (fase 1). Si las pruebas sucesivas en un pequeño número de pacientes se realizan con éxito (fase 2), el fármaco puede emplearse en un grupo más amplio de varios cientos de personas (fase 3). Más tarde, se solicita a la agencia de control de medicamentos la inclusión como fármaco nuevo; debe obtenerse una autorización comercial para la utilización generalizada del medicamento en la práctica médica. El proceso que va desde el descubrimiento del antibiótico en el laboratorio hasta su ensayo clínico se suele prolongar a lo largo de varios años.

Riesgos y limitaciones

La utilización de antibióticos debe realizarse con receta médica debido a la aparición de resistencias bacterianas frente a ciertos antibióticos. Uno de los principales mecanismos de defensa es la inactivación del antibiótico. Éste es el mecanismo de defensa más frecuente frente a las penicilinas y el cloranfenicol. Otras formas de resistencia consisten en mutaciones que cambian la enzima bacteriana contra la que se dirige el antibiótico, de manera que éste no pueda ya inhibirla. Éste es el mecanismo más habitual frente a los compuestos que inhiben la síntesis de proteínas, como las tetraciclinas.

Todas las formas de resistencia se transmiten a través de los genes de la bacteria a su progenie. Además, los genes que producen resistencia también pueden transmitirse de unas bacterias a otras a través de plásmidos, que son fragmentos cromosómicos que contienen sólo una pequeña cantidad de genes (entre éstos, el gen de la resistencia). Así, algunas bacterias se unen a otras de la misma especie de forma transitoria, transmitiéndose los plásmidos. Si una bacteria recibe dos plásmidos portadores de genes de resistencia a diferentes antibióticos, estos genes se pueden unir en un único plásmido. La resistencia combinada puede así ser transmitida a una nueva bacteria, donde puede unirse a otra forma de resistencia. Se generan así plásmidos que son portadores de resistencia a diferentes clases de antibiótico. Existen además plásmidos que pueden ser transmitidos entre especies diferentes de bacterias, permitiendo la transferencia de resistencias a múltiples antibióticos entre especies bacterianas muy dispares.

La utilización de antibióticos de forma profiláctica (antes de que aparezca la infección, para intentar prevenirla) ha agravado el problema de las resistencias. La utilización inadecuada e indiscriminada de antibióticos para el tratamiento de catarros u otras infecciones virales comunes, contra las que los antibióticos no tienen ningún efecto, elimina las bacterias sensibles a antibióticos y permite el desarrollo de bacterias resistentes. La utilización de antibióticos en el ganado y aves de corral ha supuesto la aparición de resistencias generalizadas y la contaminación de aves y productos ganaderos por bacterias resistentes a antibióticos, como las del género Salmonella.

En la década de 1970, la tuberculosis estaba prácticamente erradicada en los países desarrollados, aunque seguía siendo una enfermedad prevalente en los países en desarrollo. En la actualidad, su incidencia está en aumento debido en parte a la resistencia del bacilo de la tuberculosis a los antibióticos. Algunas bacterias, y en particular algunas cepas de estafilococo, son resistentes a casi todos los antibióticos, de forma que las infecciones que producen no responden a ningún tratamiento. Cuando una cepa de estas características aparece en una planta de un hospital, a veces es necesario cerrar esa planta durante una temporada. Algo similar ocurre con el plasmodio, el organismo responsable del paludismo o malaria: la resistencia de éste a los antibióticos, así como la resistencia del mosquito portador a los insecticidas que antes eran eficaces para su control, es cada vez más frecuente. En consecuencia, el paludismo o malaria está aumentando de nuevo en algunas zonas de África, de Oriente Próximo, del Sureste asiático y de Latinoamérica.

PORTADA